Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201808117

Highly Surface-Wrinkled and N-Doped CNTs Anchored on Metal Wire: A Novel Fiber-Shaped Cathode toward High-Performance Flexible Li–CO₂ Batteries

Yinchuan Li, Jingwen Zhou, Tingbo Zhang, Tianshuai Wang, Xuelian Li, Yafu Jia, Jianli Cheng, Qun Guan, Enzuo Liu, Huisheng Peng, and Bin Wang*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

Highly Surface-Wrinkled and N-Doped CNTs Anchored on Metal Wire: A Novel Fiber-Shaped Cathode toward High-Performance Flexible Li-CO₂ Batteries

Yinchuan Li, Jingwen Zhou, Tingbo Zhang, Tianshuai Wang, Xuelian Li, Yafu Jia, Jianli Cheng, Qun Guan, Enzuo Liu, Huisheng Peng and Bin Wang*

Y. Li, J. Zhou and T. Zhang contributed equally to this work.

Figure S1. (a) Typical SEM, (b) FE-SEM, (c-f) TEM and (g-i) HRTEM images with a SAED pattern inset in (g) of the as-synthesized highly surface-wrinkled and N-doped CNT networks anchored on Ti wire.

Figure S2. (a,b) Typical SEM images of the Ti wire with the diameter of 210 μ m after being cleaned by acetone, alcohol and distilled water, respectively.

Figure S3. (a,b) SEM and (c,d) TEM images of commercial carboxylic multi-walled CNT powders (CNT-COOH) with the average diameter of 20-30 nm.

Figure S4. (a) Dark field TEM image of an individual highly surface-wrinkled and N-doped CNT extracted from Ti wire. (b) Element content of C, N and O, and (c) EDX spectrum corresponding to the selected area (indexed by pink rectangle) of N-CNT shown in (a).

Figure S5. (a) XPS spectra of N-CNTs@Ti composite fiber and commercial CNT powder.(b) The high-resolution XPS spectrum of N 1s for N-CNTs@Ti, exhibiting four different doping categories of nitrogen atoms.

Figure S6. Raman spectra of N-CNTs@Ti and commercial CNT powder.

Figure S7. CV curves of the Li-CO₂ cell with a N-CNTs@Ti cathode under CO₂ at a scan rate of 0.1 mV s⁻¹ over the voltage window of 2-4.5 V.

Figure S8. (a) The SEM image of Al mesh coated with Au nanoparticles (ALM@Au) as the none carbon-containing Li-CO₂ battery cathode for surface enhanced Raman spectroscopy (SERS) test. (b) Raman spectra collected on the gold cathode before (red line) and after (black line) discharging at 10 μ A in CO₂ atmosphere.

Figure S9. Galvanostatic discharge profiles of N-CNTs@Ti, pristine Ti wire and Ti wire after the same calcination process without carbon resources and catalyst precursors within the preliminary 100 μ Ah under CO₂ atmosphere.

Figure S10. (a) Voltage-time curve of the Li-CO₂ battery with N-CNTs@Ti fibers as the working electrode at a current density of 50 mA g^{-1} and curtailing capacity of 1000 mAh g^{-1} . (b) Median voltages of discharge/charge plateaus with corresponding energy efficiencies inside of the Li-CO₂ cell at different cycles.

Figure S11. (a) Voltage-time curve of the Li-CO₂ battery with N-CNTs@Ti fibers as the working electrode at a current density of 250 mA g^{-1} and curtailing capacity of 1000 mAh g^{-1} . (b) The long-term cycling performance of the Li-CO₂ cell with a N-CNTs@Ti fibers cathode. The red line refers to the discharge end voltage while the blue line refers to curtailing capacity at every cycle. The cycling performance was tested with a current density of 250 mA g^{-1} and the discharge and charge capacities were limited to 1000 mAh g^{-1} .

Figure S12. Galvanostatic discharge/charge profiles of commercial N-CNT powder cathode at the initial 13 cycles. The current density was set to 250 mA g^{-1} and the discharge/charge capacities were limited to 1000 mAh g^{-1} .

Figure S13. Typical SEM images of N-CNTs@Ti electrodes after the initial discharge process in CO₂ at different current densities of (a) 50 mA g^{-1} and (b) 250 mA g^{-1} , respectively, with a curtailing capacity of 1000 mAh g^{-1} .

Figure S14. Comparison of galvanostatic discharge/charge profiles of the N-CNTs@Ti and commercial CNT powder cathodes at different current densities: (a) 0.05, (b) 0.1, (c) 0.2, (d) 0.5 and (e) 1 A g^{-1} . The capacity was limited to 1000 mAh g^{-1} during cycling.

Figure S15. Rate performance of N-CNTs@Ti fiber at different current densities of 50, 100, 200, 500 and 1000 mA g^{-1} with the curtailing capacity of 1000 mAh g^{-1} , demonstrating the median voltages of discharge/charge processes.

Figure S16. Comparison of specific capacity based on the weight of active materials between several typical kinds of fiber-shaped novel batteries, including the LMO-LTO battery,^[S15] LMO-Si battery,^[S16] G/Ni-Na battery,^[S17] Zn-C battery,^[S18] Li-S battery,^[S19] Al-O₂ battery,^[S20] Zn-O₂ battery,^[S21] Li-O₂ battery^[S22], ambient Li-air battery^[S23] and Li-CO₂ battery in this work. The results were obtained from the data which these literatures provided, or by estimating based on the reported electrochemcial performances. Specifically, LMO and LTO represent LiMn₂O₄ and Li₄Ti₅O₁₂, respectively.

	Cathode	Anode	State of electrolyte	Middle Discharge Voltage (V)	Capacity (mAh g ⁻¹)
This work	N-CNTs@Ti fiber	Li wire	Liquid	2.67	9292.3
Li-ion battery ^[S1]	LiMn ₂ O ₄ @CNT fiber	Li ₄ Ti ₅ O ₁₂ @CNT fiber	Liquid	2.5	138
Li-ion battery ^[S2]	LiMn ₂ O ₄ @CNT fiber	CNT/Si/CNT fiber	Liquid	3.4	106.5
Na-ion battery ^[S3]	Carbon cloth@G@Ni sheet	Na sheet	Liquid	2.9	110
Zn-C battery ^[S4]	CNF@MnO ₂ fiber	CNF@Zn powder fiber	Liquid	1.25	166
Li-S battery ^[S5]	S@CMK3@rGO@C NT fiber	Li wire	Liquid	2.1	1051
Al-Air battery ^[S6]	CNT@Ag NPs sheet	Al spring	GPE	1.25	935
Zn-Air battery ^[S7]	PTFE/AC@Fe/N/C sheet	Spiral Zn foil	GPE	0.9	1256
Li-Air battery ^[S8]	Carbon cloth@super P sheet	Li wire	GPE	2.65	6200
Li-Air battery ^[S9]	Aligned CNT array	Li wire	GPE	2.4	12470

Note: All of the above electrochemical data were obtained directly from the literatures or converted/evaluated based on the given electrochemical performances.

Cathode	State of electrolyte	Mechanical Flexibility	Discharge Plateau (V)	Charge Plateau (V)	Capacity (mAh g ⁻¹)	Cycling Stability (N)
N-CNTs@Ti fiber [this work]	Liquid	Y	2.83	4.2	9292.3	45
Super P powder ^[S10]	Liquid	Ν	2.7	4.2	1032	7
CNT powder ^[S11]	Liquid	Ν	2.7	4.3	8379	29
Graphene powder ^[S12]	Liquid	Ν	2.75	4.2	14722	20
RuO ₂ /LDO powder ^[S13]	Liquid	Ν	2.52	3.25	/	8
Carbon cloth@CoPPc film ^[S14]	Liquid	Y	2.8	4.0	13.6 mAh cm ⁻²	50
Mo ₂ C/CNT powder ^[S15]	Liquid	Ν	2.5	3.45	287.5	40
CNT cloth@Mo ₂ C NPs film ^[S16]	GPE	Y	2.68	3.39	3.415 mAh cm ⁻²	40
NiO-CNT powder ^[S17]	Liquid	Ν	2.7	4.1	9000	42
N-doped G@Cu NPs powder ^[S18]	Liquid	Ν	2.85	3.6	14864	50
Ru@Super P powder ^[S19]	Liquid	Ν	2.54	4.25	8229	70
Ir/CNFs powder ^[S20]	Liquid	Ν	2.76	4.14	21528	45
N-doped G@Ni NPs powder ^[S21]	Liquid	Ν	2.82	4.15	17625	101
CNT powder ^[S22]	GPE	Ν	2.7	4.35	8536	60
CNT powder ^[S23]	GPE at 55 □	Y	2.25	3.2	993.3 mAh	80

Table S2. Comparisons of electrochemical performances between previous Li-CO₂ batteries.

Note: All of the above electrochemical data were obtained directly from the literatures or converted/evaluated based on the given electrochemical performances.

Figure S17. A red LED lit up by a 5 cm quasi-solid-state flexible fiber-shaped Li-CO₂ battery using N-CNTs@Ti as the cathode at different bending angles.

Figure S18. Typical SEM images of this N-CNTs@Ti hybrid fiber at different stages: (a) pristine, (b) discharged and (c) recharged.

Figure S19. Top view of the optimized energetically most favorable structures of (a) Li, (c) CO_2 and (e) Li_2CO_3 adsorbed on pure CNT (002) surface. The brown, green and red balls represent C, Li and O, respectively. Charge density difference of (b) Li, (d) CO_2 and (f) Li_2CO_3 adsorbed on pure CNT (002) surface, respectively. The blue and pink regions represent the charge accumulation and charge loss, respectively. The isosurface value is set to be 0.001 e/Å³. The electronic density of states (e-DOS) around the Fermi-level (E_f) of pure CNT after (g) Li, (h) CO_2 and (i) Li_2CO_3 was adsorbed on the surface.

Figure S20. Top view of the optimized energetically most favorable structures of (a) Li, (b) CO_2 and (c) Li_2CO_3 adsorbed on N-Q site of pyridinic and graphitic N-doped CNT (002) surface. The brown, green and red balls represent C, Li and O, respectively.

Figure S21. (a) Top view of pyrrolic and graphitic N-doped CNT (002) surface. (b) Top view of the optimized energetically most favorable structures of Li adsorbed on N-5 site. Top view of CO_2 adsorbed on N-5 site (c) before and (d) after energy optimization. Top view of Li_2CO_3 adsorbed on N-5 site (c) before and (d) after energy optimization. The brown, green and red balls represent C, Li and O, respectively.

References

- [1] J. Ren, Y. Zhang, W. Bai, X. Chen, Z. Zhang, X. Fang, W. Weng, Y. Wang, H. Peng, Angew. Chem. Int. Ed. 2014, 126, 7998.
- [2] W. Weng, Q. Sun, Y. Zhang, H. Lin, J. Ren, X. Lu, M. Wang, H. Peng, Nano Lett. 2014, 14, 3432.
- [3] Y. Zhu, S. Yuan, D. Bao, Y. Yin, H. Zhong, X. Zhang, J. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1603719.
- [4] X. Yu, Y. Fu, X. Cai, H. Kafafy, H. Wu, M. Peng, S. Hou, Z. Lv, S. Ye, D. Zou, Nano Energy 2013, 2, 1242.
- [5] X. Fang, W. Weng, J. Ren, H. Peng, Adv. Mater. 2016, 28, 491.
- [6] Y. Xu, Y. Zhao, J. Ren, Y. Zhang, H. Peng, Angew. Chem. Int. Ed. 2016, 55, 7979.
- [7] J. Park, M. Park, G. Nam, J. Lee, J. Cho, Adv. Mater. 2015, 27, 1396.
- [8] T. Liu, Q. Liu, J. Xu, X. Zhang, Small 2016, 12, 3101.
- [9] Y. Zhang, L. Wang, Z. Guo, Y. Xu, Y. Wang, H. Peng, Angew. Chem. Int. Ed. 2016, 55, 4487.
- [10] Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, Energy Environ. Sci. 2014, 7, 677.
- [11] X. Zhang, Q. Zhang, Z. Zhang, Y. Chen, Z. Xie, J. Wei, Z. Zhou, Chem. Commun. 2015, 51, 14636.
- [12] Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou, Z. Xie, J. Wei, Z. Zhou, Angew. Chem. Int. Ed. 2015, 54, 6550.
- [13] S. Xu, Z. Ren, X. Liu, X. Liang, K. Wang, J. Chen, Energy Storage Mater. 2018, 15, 291.
- [14] J. Chen, K. Zou, P. Ding, J. Deng, C. Zha, Y. Hu, X. Zhao, J. Wu, J. Fan, Y. Li, Adv. Mater. 2018, 30, 1805484.
- [15] Y. Hou, J. Wang, L. Liu, Y. Liu, S. Chou, D. Shi, H. Liu, Y. Wu, W. Zhang, J. Chen, Adv. Funct. Mater. 2017, 27, 1700564.
- [16] J. Zhou, X. Li, C. Yang, Y. Li, K. Guo, J. Cheng, D. Yuan, C. Song, J. Lu, B. Wang, Adv.

Mater. 2018, 30, 1804439.

- [17] X. Zhang, C. Wang, H. Li, X. Wang, Y. Chen, Z. Xie, Z. Zhou, J. Mater. Chem. A 2018, 6, 2792.
- [18] Z. Zhang, Z. Zhang, P. Liu, Y. Xie, K. Cao, Z. Zhou, J. Mater. Chem. A 2018, 6, 3218.
- [19] S. Yang, Y. Qiao, P. He, Y. Liu, Z. Cheng, J. Zhu, H. Zhou, *Energy Environ. Sci.* 2017, 10, 972.
- [20] C. Wang, Q. Zhang, X. Zhang, X. Wang, Z. Xie, Z. Zhou, Small 2018, 14, 1800641.
- [21] Z. Zhang, X. Wang, X. Zhang, Z. Xie, Y. Chen, L. Ma, Z. Peng, Z. Zhou, Adv. Sci. 2017, 5, 1700567.
- [22] C. Li, Z. Guo, B. Yang, Y. Liu, Y. Wang, Y. Xia, Angew. Chem. Int. Ed. 2017, 129, 9254.
- [23] X. Hu, Z. Li, J. Chen, Angew. Chem. Int. Ed. 2017, 56, 5785.