The creation of hollow walls in carbon nanotubes for high-performance lithium ion batteries

Zhiyong Pan, Hao Sun, Jian Pan, Jing Zhang, Bingjie Wang*, and Huisheng Peng*

Experimental Section

Synthesis of spinnable CNT array. Aligned carbon nanotube (CNT) array was synthesized through chemical vapor deposition. The catalyst was synthesized *via* electron beam evaporation. Aluminum oxide and iron were deposited on silicon wafer with thicknesses of 2 and 1.2 nm, respectively. The catalyst was then transferred into a tube furnace, and Ar (400 sccm), C_2H_4 (90 sccm) and H_2 (30 sccm) were introduced to this system with the growth temperature kept at 740 °C for 10 min.

Characterization. The structures were characterized by scanning electron microscopy (SEM, Hitachi FE-SEM S-4800 operated at 1 KV), and transmission electron microscopy (TEM, JEOL JEM-2100F operated at 200 KV). The electrochemical performances were measured by an Arbin electrochemical station (MSTAT-5V/10mA/16Ch). The batteries were assembled using hollow-structured CNTs directly as working electrode and lithium foil as counter electrode with the commonly used LB303 electrolyte. They were charged and discharged at 0.005-3.0 V at current densities of 0.1, 0.2, 0.5, 1, 2 and back to 0.1 A g⁻¹. The cyclic voltammograms were obtained at a scan rate of 0.5 mV s⁻¹ at 0.01-3 V.

Figure S1. X-ray photoelectron spectra of the HNCNTs.

Figure S2. High-resolution TEM image of nitrogen-doped graphene/Al₂O₃/CNT.

Figure S3. Energy-dispersive X-ray spectroscopy images of the nitrogen-doped graphene/Al₂O₃/CNT sheet. a) TEM image of the nitrogen-doped graphene/Al₂O₃/CNT.
b) The dispersion of Al element. c) The dispersion of C element.

Figure S4. Electrical resistances on different angles in nitrogen-doped graphene/Al₂O₃/CNT.

Figure S5. TEM image of the HNCNT shell (indicated by the red arrow).

Figure S6. TEM images of nitrogen-doped graphene/ Al_2O_3 /CNTs with different Al_2O_3 thicknesses of 10, 20 and 30 nm. The re-growth time was 5 min.

Figure S7. TEM images of HNCNTs before and after HF etching with different thicknesses of Al_2O_3 layer. a, b) 10 nm, c, d) 20 nm, e, f) 30 nm. The re-growth time was 10 min.

Figure S8. TEM images of HNCNTs before and after HF etching with different thicknesses of Al₂O₃ layer. a, b) 10 nm, c, d) 20 nm, e, f) 30 nm. The re-growth time was 30 min.

Figure S9. TEM image of an HNCNT with three CNTs bundled together.

Figure S10 TEM image of two HNCNTs with a cross structure.

Figure S11. TEM image of an HNCNT with Matryoshka structure.

Figure S12. Charge-discharge curves of HNCNTs at different cycle numbers. The thicknesses of Al_2O_3 and nitrogen-doped graphene layer were 30 and 20 nm, respectively.

Figure S13. Specific capacitances based on HNCNTs with a nitrogen-doped graphene layer of 20 nm during 2,000 charge-discharge cycles.

Figure S14. Specific capacitances based on HNCNTs with a nitrogen-doped graphene layer of 100 nm during 2,000 charge-discharge cycles.

Figure S15. TEM image of an HNCNT after discharging.

Figure S16. High-resolution TEM image of an HNCNT after discharging.

Figure S17. TEM image of Si-incorporated HNCNTs after etching by HF for 30 min. The thicknesses of Si and nitrogen-doped graphene layers were 30 and 10 nm, respectively.

Figure S18. Specific capacitances of Si-incorporated HNCNTs during 2,000 chargedischarge cycles. The thicknesses of Si and nitrogen-doped graphene layers were 50 and 20 nm, respectively. Current density, 2 A g^{-1} .

Figure S19. Charge-discharge curves of nitrogen-doped graphene/Si/CNT. The thicknesses of Si and nitrogen-doped graphene layers were 30 and 20 nm, respectively.

Figure S20. Rate performance of nitrogen-doped graphene/Si/CNT. The thickness of Si and nitrogen-doped graphene layers were 30 and 20 nm, respectively.

Figure S21. CV curves of CNTs at lower rate 0.2 mV s^{-1} . The coulombic efficiency was calculated by the ratio of areas of different cycles. 49% for the 1^{st} cycle, 91% for the 2^{nd} cycle, 95% for the 5th cycle and 94% for the 10^{th} cycle.