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Figure S1. XRD patterns (a), Raman spectra (b), N2 adsorption-desorption isotherms (c), 

and pore size distribution curves (d) of NDCT@MnO-6 and NDCT@MnO-8. 
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Figure S2. TGA curve of NDCT@MnO nanocomposite in air.  

 

For NDCT@MnO-7 nanocomposites, a weight loss of 6.4% from room temperature to 150 
oC is due to the removal of absorbed water. Subsequently, the weight loss from 150 to 800 
oC can be attributed to both the combustion of carbon in air and oxidation of MnO to 

Mn2O3. The final remaining product (46.8%) will be only Mn2O3. The theoretical value of 

the weight increase from MnO to Mn2O3 is 11.27%. Thus, the actual amount of MnO in 

NDCT@MnO-7 nanocomposites can be calculated from: 46.8%/ (1+11.27%)=42.06%. 

Similarly, the amount of MnO in NDCT@MnO-6 and NDCT@MnO-8 was calculated to be 

33.99% and 25.58%, respectively. 
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Figure S3. N2 adsorption-desorption isotherms and pore size distribution (inset) of (a) 

NDCT@MnO-7, (b) PANI@Mn3O4, (c) NDCT, and (d) pure MnO. 
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Figure S4. BET surface area of all as-prepared materials. 
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Figure S5. (a) Survey XPS spectrum of NDCT@MnO-7 nanocomposites, High-resolution C 

1s XPS spectra of NDCT@MnO-7 (b), NDCT@MnO-6 (c), and NDCT@MnO-8 (d) 

nanocomposites. 
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Figure S6. (a) Survey XPS spectrum of NDCT@MnO-6 and NDCT@MnO-8, 

High-resolution N 1s XPS spectra of NDCT@MnO-6 (b) and NDCT@MnO-8 (c), (d) 

Evolution of the content of different N species of NDCT@MnO nanocomposites as a 

function of the pyrolysis temperature. S1 is NDCT@MnO-6, S2 is NDCT@MnO-7, S3 is 

NDCT@MnO-8. 
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Figure S7 Nyquist dots of the NDCT@MnO (a), PANI@Mn3O4, NDCT-700, and MnO (c). 

Real parts of the impedance (Z’) versus the reciprocal square root of angular frequency (ω) 

in the low frequency region of the NDCT@MnO samples (b), PANI@Mn3O4, NDCT-700, 

and MnO samples (d). 

 

Figure S7a,c present the electrochemical impedance spectra (EIS) of the NDCT@MnO, 

PANI@Mn3O4, NDCT, and MnO materials. All the Nyquist plots are composed of a 

depressed semicircle from high to medium frequency followed by a slope line in the low 

frequency region, where the former is related to the charge transfer impedance (Rct) at the 

electrode/electrolyte interfaces, and the latter corresponds to the Warburg impedance (Zw) 

associated with Na+ diffusion in the NDCT@MnO. Rs refers to the solution impedance, and 

constant-phase element (CPE) represents the double-layer capacitance, taking into 

account the roughness of the particle surface. 

EIS is an important tool to evaluate the diffusion coefficient of Na+ ions (DNa) within the 

electrode: 
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In Eq. S1, R is the gas constant, T is the absolute temperature, A is the surface area of 

electrode, n is the number of electrons per molecule during oxidization, F is the Faraday 

constant, C is the concentration of sodium ion, and σ is the Warburg factor, σ relates to Z’ 

through Eq. S2 and its value can be obtained from the slope of the line between Z’ and ω1/2 

as shown in Figure S7b,d. 
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As can be calculated, the σ value of NDCT@MnO-7 is the smallest, reflecting the largest 

DNa (Table S3). This further demonstrates that the N-doping and the uniformly dispersed 

ultrasmall MnO nanoparticles can facilitate the Na+ ions diffusion kinetics. 
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Figure S8. (a) TEM image of PANI nanotubes. (b) Particle size distribution diagram of 

MnO nanoparticles in NDCT@MnO-7. (c) STEM image of NDCT@MnO-7 

nanocomposites. 
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Figure S9. TEM images of NDCT@MnO-6 (a) and NDCT@MnO-8 (b). 
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Figure S10. Rate capability of (a) NDCT and (b) free MnO in the potential window of 

0.01~3.0 V vs. Na/Na+. 
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Figure S11. Rate capability of NDCT@MnO-6 (a) and NDCT@MnO-8 (b) in the potential 

window of 0.01~3.0 V vs. Na/Na+. 
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Figure S12. Rate capability of PANI@Mn3O4 in the potential window of 0.01~3.0 V vs. 

Na/Na+. 
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Figure S13. Rate capability of PANI@Mn3O4, NDCT, NDCT@MnO, and MnO. 
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Figure S14. TEM images of NDCT@MnO-7 electrode. (a) sodiated (after the 1st discharge), 

(b) desodiated (after the 1st charge). 
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Figure S15. (a) TEM and (b) HRTEM images of NDCT@MnO-7 nanocomposites after 3000 

cycles at 5 A g-1. 
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Table S1 The content of various N species (atomic ratio, %) 

Materials Total content of 

N 

Pyridinic-N Pyrrolic-N Graphitic-N Oxidized-N 

NDCT@MnO-6 5.43 31 25 27 17 

NDCT@MnO-7 4.75 29 21 31 19 

NDCT@MnO-8 1.62 3 9 68 2 
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Table S2 Electrical conductivity of the as-prepared materials from a four-probe method. 

Materials σ (S·m-1) 

MnO <9.4×10-6 

NDCT-700 14.6 

PANI@Mn3O4 <9.4×10-6 

NDCT@MnO-6 0.25 

NDCT@MnO-7 0.37 

NDCT@MnO-8 0.20 
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Table S3 Simulated results corresponding to the ESI data shown in Figure S7. 

Sample Rs (Ω) Rct (Ω) σ (Ω cm s-1/2) DNa (cm2 s-1) 

NDCT@MnO-8 5.4 647.9 62.4 2.7×10-12 

NDCT@MnO-7 4.1 618 45.4 4.8×10-12 

NDCT@MnO-6 4.6 623.2 47.2 4.4×10-12 

PANI@Mn3O4 19.3 4071 1246.1 8.9×10
-17

 

NDCT-700 13.37 2690 404.8 2.1×10-15 

MnO 20.1 3980 1139.1 1.7×10
-16
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Table S4. Specific capacities of NDCT, free MnO nanoparticles and NDCT@MnO 

nanocomposites at different current densities.  

Current density (A g-1) 0.1 0.2 0.5 2 5 

PANI@Mn3O4 (mAh g-1) 178 125 83 54 26 

NDCT (mAh g-1) 242 152 100 54 24 

NDCT@MnO-6 (mAh g-1) 665 530 437 307 266 

NDCT@MnO-7 (mAh g-1) 709 541 463 360 292 

NDCT@MnO-8 (mAh g-1) 631 519 414 290 235 

Free MnO (mAh g-1) 54 36 25 16 13 
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Table S5. Comparison of electrochemical performance of transition metal oxides anodes 

for SIBs. 

Materials 

Current 

density 

(A g-1) 

Cycle 

number 

Capacity 

(mAh g-1) 
Reference 

NDCT@MnO 5 3000 273 This work 

Co3O4/N-doped carbon 0.5 50 276 1 

MnOOH 0.5 50 223.1 2 

Nitrogen doped/carbon tuning 

yolk-like TiO2 
0.168 200 243.2 3 

Carbon-coated TiO2 nano-olives 0.336 1000 125 4 

2 nm CuO quantum dots@carbon 

nanofibers 
0.5 500 401 5 

Fe3O4@carbon nanotube 0.1 300 377 6 

MnCoNiOx@double carbon 0.1 500 230 7 

Fe2O3@graphene composite 

nanosheets 
2 500 110 8 

graphene-Fe3O4  0.05 200 312 9 

Graphene@nitrogen doped 

carbon@TiO2 
1 5000 109 10 

Multi-walled carbon 

nanotubes@Fe2O3@C 
0.16 100 272 11 

Co3O4@nitrogen-doped carbon 1 1100 175 12 
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